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ABSTRACT

Physical librations of the moon, which cause seleno-
graphic axes fixed in the true moon to have a different
orientation than similar axes fixed in the mean moon, are
small cyclic perturbations with periods of one month and
longer, and amplitudes of 100 arc seconds or less.

These librations have two types of effects of
present interest. If the orbital elements of a lunar satellite
are referred to selenographic axes in the true moon as it
rotates and librates, then the librations cause changes in
the orientation angles (node, inclination and periapsis argu-
ment) large enough that long period planetary perturbation
theory cannot be used without compensation for such geometri-
cal effects. As a second effect, the gravitic potential of
the moon is actually wobbled in inertial space, a condition
not included in the potential expression used in planetary
perturbation theory.

The paper gives data on the magnitude of the physi-
cal librations, the geometrical effects on the orbital elements
and the equivalent changes in the coefficients in the potential.
Fortunately, the last effect is shown to be small.
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INTRODUCTION

The long—-term selenodesy method for determining
lunar gravity coefficients [1l] uses a time history of
orbital elements in conjunction with the long-period form
of the Lagrange planetary equations. The disturbing
function for spherical harmonics used in such work,
typically as derived by Kaula [2], is referenced to a
selenographic coordinate system, fixed in the moon. The
x-y axes of this system are in the lunar equatorial plane
and the z axis is along the lunar polar axis. The analy-
tical derivation of the Lagrange perturbation equations
requires that the osculating orbital elements be referenced
to an inertial coordinate system. In order to make the
inertial and selenographic systems simply relatable, it is
assumed that they have a common z axis and the moon rotates
about this z axis.

But, in addition to its normal rotation about
its polar axis, the selenographic system undergoes addi-
tional rotations about all three axes due to precession and
physical librations. These small rotations can affect
long-term selenodesy calculations in two ways. First,
if the selenographic axes are used as the reference system,
some of the orbital elements will change simply because
the axes librate and precess (geometrical effects).
Second, since perturbation theory (in its present form)
accommodates only polar rotations of the selenographic
system, there are also physical effects induced by lunar
librations and precession.

This paper illustrates the geometrical and
physical effects associated with the changing orientation



of the selenographic axes. It is shown that geometrical
effects can be accommodated either by using an inertial
axes system or by compensating for the lunar librations
and precession when the selenographic axes are used.
Further, it is shown that physical effects are small and
negligible for all but the most exacting endeavors.

MOTION OF THE MOON

Standard angles [3,4,5,6] which yield the orienta-
tion of the true selenographic of date (TSD) axes at any
particular instant are referenced to the mean earth equator-
equinox (MOE) axes of some chosen epoch. These two systems

are relatable using a direction cosine matrix My, so that

a position vector r measured in the TSD axes is trans-
formed into the MOE axes as follows:

Imor = Mp Zpsp

If the rotation matrices Rl(e), R2(e), and R3(e) are defined
as

1 0 0 cC 0 s c -5 0
Rl(e) =0 C -s¢i, Rz(e) = 0 1 04, R3(6) =S c 0O
0 S C -S 0 C 0 0 1

C = cos® 8 = sinbé

the overall direction cosine matrix, MT' between the MOE

axes and the TSD axes is given by the following cascade
of rotation matrices:

MT = R3(%—§O)Rl(6)R3(—%“Z)Rl(e)R3(Q+180°+0)Rl(1+p)R3(¢+T—Q—0)

(A1l angles are illustrated in Figure 1.)



o’ 0, z are earth precession angles and ¢ is

the mean obliquity. Together these angles establish the
mean Ecliptic of Date (MED) axes to which the lunar angles
are referenced. These angles are needed only to establish
the correct orientation of the TSD axes: their changes

over the time periods of interest in selenodesy are
negligible.

' The angles @, I, and € are the mean node,
inclination, and anomaly of the moon. The rotational

rates of the mean selenographlc of date (MSG) axes are
@—Q(l—cosI) about the polar axis (27.3 day period), and

§ sin I cos(€-@) and & sin I sin(€-Q) about the x_ and y
mean lunar axes respectively. I is constant and & measures
the precession of the lunar node (18.6 year period).

The angles o, p, and 1t are the physical librations
of the moon, which distinguish the true from the mean lunar
axes. They are cyclic (see Appendix for formulas) with
principal components having periods of 27.5 days, 1 year,
and 18.6 years in duration.

Figures 2 and 3 show the location of the true
selenographic z and x axes relative to mean selenographic
axes, both at the same instant. The differences can be
given as three small (cyclic) angles

ay = T - g{(l-cos I)

6 sin I cos(@—0+r—%) -0 sin(«t-sm-‘—z’)

i

o sin I sin((-ﬂ+r—%) + p cos(@—9+r—%)
with direction cosines for mean-to-true axes of

The figures are for the 28 day period following August 30, 1967.
a date typical of the selenodesy phase of the Lunar Orbiter
III satellite.



The bias between the mean and true axes that appears
in the figures is due to the components of physical libration
which have a period longer than the 28 day time span in the
figures.

The three small angles between true seleno-
graphic axes of a fixed epoch (to) and true selenographic

axes at a different instant (t), are:

By = AC + At ~ (AQ+A0) (1-cos (I+p))

B, = (A8+A0) sin(I+p) cos(C'+1'-(8"+0'))
-Ap sin(d'+1'-(Q°'+0'))
By = (Af+10) sin(I+p) sin(C'+7t'-(Q'+0"))

+Ap cos('+1'-(Q'+c'))

Here €' (for example) applies at t and AC is
d(t) - (Xto)@ The direction cosine matrix (to to t) is

Ry(B3) Ry(B,) Ry (B)

Although the a's are all cyclic, the 8's are
not, because € and & both monotonically change. Bl and

B, are treated as small angles, but if enough time passes
By may be sizeable enough that small angle approximations
are insufficient for it. The AC - AQ(l-~cos I) part of 63

does not show up in Figures 2 and 3 since in that figure
the mean and true axes are always at the same instant.



PERTURBATION THEORY

Lagrange's perturbation theory [2] applies for
the basic vector differential equation

r + £§ r = VR
r

where R is now the disturbing potential function. To
account for, say, irregularities in density and shape of
the moon, R can have the usual spherical harmonic function
form:

£ R £
R = % E: E: EE PZm(Sin¢)[c£m cos mx + Sﬂm sin mx]
£=2 m=0

o]

where Re is the reference body radius, P the associated

Legendre function, ¢ is latitude, ) is longitude and
Cﬂm and sﬂm are the specific constants which describe the

body's potential. Using £=2 as the least index assumes
the center of mass is at the origin of the coordinate
axes.

In Lagrange's work appropriate "orbital elements”
are found - quantities which describe the satellite orbit
completely, which are constants if R = 0 and if the axes
in which r is measured are inertial. The classical set of
orbital elements is suggested in Figure 4. Q is the node on
the planet's equator, i the inclination, w the argument of
periapse, f the true anomaly, a the semi-major axis and e the
eccentricity. All are constant except f, but Mo and n are

constant in the equation for the mean anomaly M, and it is
related to £ through the eccentric anomaly E. The equations
are



M=E - e sin E = MO + n(t—to)

A typical equation in perturbation theory is

2 .
aa 3n Re cos i

—_— = C
dE T J1ocH2 a2 20

+ (other Cﬁm and Sﬂm effects)

so if only C20 were non-zero, then accurate knowledge of

de/dt would yield accurate knowledge of Coo°

GEOMETRICAL EFFECTS

The geometrical effects can be avoided completely
if the axes used are inertial or have only a polar rotation.
It is common, however, and suggested in many developments
of perturbation theory [2] that the reference axes be the
true planetary axes of a local epoch plus the planetary
rotation after that epoch. If the axes used were the true
selenographic axes at every instant, which is this same
assumption except for the effects of lunar precession and
physical libration, the changes in the orbit orientation
angles would be, for a purely conic orbit, calculated by

Y, = By COS(QOmBB) + B, 81n(90=83)

Yo = B4 sin(90-83) - By cos(90—33)



AQ = -83 + arc tan (y2 cos io/(sin i0 =y cos io))

AL = ~Yq

Aw = arc tan(—yz/(sin i0 - yy cos io))

Of these the mean lunar motion part of 83 in AQ would be

expected, but all the other parts would be due to physical
librations.

As an idea of the magnitude of these changes,
take orbital elements typical of the Lunar Orbiter ITII
satellite during its selenodesy phase. Table 1 shows the
elements and tabulates the element rates due to the currently
used L-1 potential coefficients (Table 2) and due to '
geometrical effects. In the node, the geometrical effects
are about 0.6% of the L-1 effects, in inclination about
7%, and in argument of perilune about 3%. For other
orbital elements, of course, the percentages would be
different, but they quite apparently are not trivial:
potential coefficients deduced from the rates without com-
pensating for the geometrical effects would be in error.

LIBRATION OF THE MOON'S POTENTIAL

Suppose the reference axes used are inertial and
are the true selenographic axes at a fixed epoch in the
range of interest. Then the geometric effects of libra-
tions are zero but the polar axis at the fixed epoch is
not always coincident with the polar axis of the true
moon (because of the Bl and Boy angles).

One way of coping with this problem is to refer
the instantaneous lunar potential to the reference axes.
That is, the coefficients which apply for the instantaneous
moon are “rotated® through the angles Bl’ 82, 63, becoming

time varying as Bys Bys By vVary with time. Several

authors [7,8,9] have shown how to calculate the rotated
coefficients. In particular Levie [9] shows that a coef~-
ficient with £=k can cause coefficients with £=k only, but
with all values of m.



TABLE 1

GEOMETRICAL EFFECTS ON ORBITAL ELEMENTS

Rate due to

Rate due to

Quantity Value L-1 field Geometrical
(deg/sec) Effects (deg/sec)
Q 63972 -11.69E-6 0.073E-6
i 20282 0.52E-6 0.038E-6
w 354259 2.19E-6 0.078E~6

a = 1965 km, e = 0.0436, Mo = 19496, t = J.D. 2439733.37




As an example, using the L1 field (Table 2),
one can show the effect of 81, 62 and 63 over the 28 day

time period used in Figure 2. Table 2 shows characteristics
of the rotated field, using true selenographic axes at

the initial time as reference axes, and with the mean
motion part of the 83 rotation removed.

As another illustration, using the orbital
elements used before, we have calculated the instantaneous
rates due to the L~-1 field - first as if the physical
lunar axes were identical to the inertial axes and then
as 1if the physical axes were displaced from the inertial
axes by the amounts given by By By and 63 (less mean

monthly motion) at a time 14 days after the initial epoch.
For this particular time these angles are By = 02062,

By = 020039 and By — mean motion = -020116. Rotating the

L-1 coefficients through these angles gives the "smudged"
IL-1 field. The rates are shown in Table 3: the differences

are small but do occur in the third place of some of the
rates.

Since 14 days is somewhat of a worst case for
Bly 32 and 63, it is also of interest to see the inte-

grated effect of time varying smudging of the field. And
so the Lagrangian long-period equations were integrated
numerically for a 28 day period. 1In one case it was
assumed the inertial and true selenographic axes were
identical except for mean lunar motion. 1In the second
the axes were identical at the start but the physical
librations and precession were also introduced, giving a
time varying smudging to the L~1 potential coefficients.
The orbital elements at the start were those given above
and Table 4 shows them 14 and 28 days later. The changes
are trivial and are far less than those due to the un-
certainty in the coefficients in the L-1 field. 1In short,
the long period effects of the smudging seem ignorably
small for practical work.

CONCLUSIONS

The geometrical effects of the lunar precession
and physical libration are appreciable in selenodetic work
if the elements of a satellite's orbit are referenced to
true selenographic axes moving with the moon. But if true
selenographic axes of a fixed epoch in the period of
interest are used, then the geometrical effects are eli-
minated and the physical effects which are introduced are
negligible.
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TABLE 2

VARIATION IN COEFFICIENTS DUE TO VARIATION IN PHYSICAL
LIBRATION AND LUNAR PRECESSION

Cpefficient Ln; Field Value Variation
Ca0 ~0.207108x10™3  +0.32x107° -0.
C 0 +0.139x10"° -6
-6 -6
Chz 0.20716x10" % +0.46x10"10 | _0.49x107 10
s 0 +0.902x10"8 -0
22 @ 1 4 °
C 0.210x10" ¢ 0.114x10"° -6
30 .210% +0.114x10 , -0.180x10
-4 —7 -7
CBl 0-340X10 +0-185X10 7 —O.llSXlO
_7 X _,,7
S31 0 +0.301x10 , =0.110x10
| -8 -8
Cy, 0 +0.818x10 , =0.517x10
32 0 +0.268x10 , -0.167x10
Caq 0.2583x10™° +0.140x10" T , -0.790x107 11

-8
833 0 +0.169x%x10 ’ -0.
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TABLE 3

PHYSICAL EFFECTS OF LIBRATION AND PRECESSION
ON RATE-OF-CHANGE OF ORBITAL ELEMENTS

. h i
Pomnt | vame | MmELP |, meceleio

Q 63272 ~-11.69E-6 °/s 0.00082E-6

i 20282 0.52E-6 °/s 0.00023E-6

w 354259 2.19E-6 °/s -0.023E-6

e 0.0436 - 0.64E-8 0.0013E-8

M 194260 0.046 °/s 0.2E-7

a = 1965 km
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APPENDIX

Formulas for the physical librations are adapted
from those of Eckhardt [5] although the angular arguments used
here are different from those given in the reference. Fur-
ther, Eckhardt gives 1l terms in the Ioc and p expansions and
18 for t [4]; the expansions given below (and used in this
study) carry only those terms with amplitudes greater than
10", following a JPL suggestion [6].

The formulas used are

Ioc = -100Y63 sin g' + 23775 sin(g'+2w’') - 10958 sin(2g'+2w")

p = -98V36 cos g' + 23984 cos(g'+2w') - 10V77 cos(2g'+2w')

T = -16Y87 sin g' + 91957 sin g - 15932 sin 2w’

+10Y0 sin(2g+2w-2u")

+ 14727 sin(360°(0.53733431 - 160104982x10_5(36525T))

where

g' = mean anomaly of the moon = { - T

g = mean anomaly of the sun = L - T



- A2 -

argument of periapsis of the sun measured from the
ascending node of the orbit of the moon =T - Q

argument of periapsis of the moon = T - Q

552175
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DISPLACEMENT ALONG MEAN X AXIS
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FIGURE 2 - PATH OF THE TRUE Z AXIS IN THE MEAN X-Y PLANE. DISPLACEMENT GIVEN iN
METERS (AT THE POLE OF THE MOOM) AND IN DEGREES.



DISPLACEMENT ALONG MEAN Z AXIS
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FIGURE 3 - PATH OF THE TRUE X AXIS IN THE MEAN Y-Z PLANE. DISPLACEMENT GIVEN IN
IN METERS (AT THE FACE OF THE MOON) AND IN DEGREES.
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